
Any questions or comments please contact Douglass George in Rm 35

Phone: 918-7488

E-mail dgeorge@v2kmail.gsfc.nasa.gov

EventProxy (3.6) Page 1 02/17/97

Vision 2000 CCS
System Monitor’s
Manage Events

Application Programming Interface
Developers Guide

Release 2.1
(2-13-97)

Any questions or comments please contact Douglass George in Rm 35

Phone: 918-7488

E-mail dgeorge@v2kmail.gsfc.nasa.gov

EventProxy (3.6) Page 2 02/17/97

Functional Description

For release 2.1, a Manage Events (EVT) Application Programmer Interface (API) will be provided for
C++ applications running on the IRIX 6.2 operating system. The EVT API will use CCS Middleware
techniques for interprocess communication (IPC), particularly the ability to pass objects between processes.
The developer will have to perform the following activities to successfully use the EVT API:

1) The developer of a CCS application using this API will have to include the files listed below
into their source code:

SYM_EvtGenerator.h

2) Developers will also have to link in with the following libraries to include this API.

l ibevtgen.so

3) Developers will need to set the following environment variables in their run scripts. These
environment variables are retrieved by the EVT API code when CCSDEBUG or UNITTEST flags
are set in the Makefile. These environment variables should then be removed or commented out
when not in CCSDEBUG or UNITTEST mode.

SYM_EVT_LOG_DIR set to the directory path for output logs
SYM_EVT_LOG_FILE set to a meaningful filename
SYM_EVT_TEST_BIN set to a meaningful filename
SYM_EVT_NETMODE set to 1 or 2

4) It is necessary to provide the DMG team a process name for every deliverable class
(application.) This process name will be entered into the oracle database with a corresponding
Process Name ID number. It is also necessary to provide DMG with an event type, event severity,
and event background that will depend on an event ID. These values will be put into the data base
for later use.

The event type and event severity enumerated types are provided below.

enum SYM_EvtEnumType {

SYM_EvtTypeNONE, //-- PRS Legacy Event Type
SYM_EvtTypeTELEMETRY, //-- PRS Legacy Event Type
SYM_EvtTypePLAYBACK, //-- PRS Legacy Event Type
SYM_EvtTypeREALTIME, //-- PRS Legacy Event Type
SYM_EvtTypeNCC, //-- PRS Legacy Event Type
SYM_EvtTypeGROUND_CONFIGURATION, //-- PRS Legacy Event Type
SYM_EvtTypeALARM, //-- PRS Legacy Event Type
SYM_EvtTypeCOMMAND_DIALOG, //-- PRS Legacy Event Type
SYM_EvtTypePSTOL_RESPONSE, //-- PRS Legacy Event Type
SYM_EvtTypeGENERAL, //-- PRS Legacy Event Type
SYM_EvtTypeSYSTEM_SOFTWARE_ERROR, //-- PRS Legacy Event Type
SYM_EvtTypeKEYBOARD_INPUT_ECHO, //-- PRS Legacy Event Type
SYM_EvtTypeOFLS_OLS_FILE_TRANSFER, //-- PRS Legacy Event Type
SYM_EvtTypeCOMMAND_PAGE //-- PRS Legacy Event Type

Any questions or comments please contact Douglass George in Rm 35

Phone: 918-7488

E-mail dgeorge@v2kmail.gsfc.nasa.gov

EventProxy (3.6) Page 3 02/17/97

}; //-- end of enumeration definition

enum SYM_EvtEnumSeverity {

SYM_EvtSeverityDEBUG, // Debug Mode - Events not archived
SYM_EvtSeverityINFORMATIONAL, // Informational event
SYM_EvtSeverityERROR, // Error Event - low priority
SYM_EvtSeverityFATAL // Fatal Event - high priority

}; //-- end of enumeration definition

Any questions or comments please contact Douglass George in Rm 35

Phone: 918-7488

E-mail dgeorge@v2kmail.gsfc.nasa.gov

EventProxy (3.6) Page 4 02/17/97

Supporting Documentation

The following documentation provides a detailed description of how event messages are used in the CCS
context and explain the terminology used in this EVT API Developer’s Guide.

• Manage Events Straw-Person Memorandum

• Vision 2000 Control Center System Monitoring Manage Events Release 2.1 Design Walk-
through

• Managing Events Functional Requirements for the Hubble Space Telescope Control Center
System

This documentation is available at http://ccs.gsfc.nasa.gov/ccspages/teaminfo/pat/Evt/Ma_evt.htm

Any questions or comments please contact Douglass George in Rm 35

Phone: 918-7488

E-mail dgeorge@v2kmail.gsfc.nasa.gov

EventProxy (3.6) Page 5 02/17/97

Directions for Use

The CCS application must first initialize the API by instantiating the proxy class SYM_EvtGenerator

METHOD SYM_EvtGenerator(short unsigned int processNameID,
 SYM_EvtSubSystem subSystem_);

PURPOSE
Constructor

ARGUMENTS
processNameID used to determine the name of process or class that is calling this

particular proxy object. The integer passed for this parameter will correspond
to a textual description of the process name maintained by the DMG
subsystem.

subSystem used to determine the name of the subSystem that is using this particular
proxy object. Enumerated types are as follows:

CCS_CCS
CCS_FEP
CCS_CMD
CCS_SYM
CCS_DMG
CCS_CCM
CCS_GUI
CCS_MDW

RETURN VALUE
None

The CCS application using the EVT API must call a series of method calls. The
SYM_EvtGenerator.createEvent and SYM_EvtGenerator.sendEvent method calls must
be called in respective order. In addition, a CCS developer can use any of the overloaded
SYM_EvtGenerator.addForeground methods, after the
SYM_EvtGenerator.createEvent method, to add necessary foreground elements to an event
message.

Any questions or comments please contact Douglass George in Rm 35

Phone: 918-7488

E-mail dgeorge@v2kmail.gsfc.nasa.gov

EventProxy (3.6) Page 6 02/17/97

METHOD short int createEvent(const short unsigned int eventID
 const SYM_EvtEnumOpMode opMode)

PURPOSE To create an event message containing the id number of the message and the
operational mode of the calling application.

ARGUMENTS eventID used to identify the id number as indicated in the Event Lookup Table
provided by the DMG subsystem

opMode used to identify the operational mode of the application using this particular
proxy object. Enumerated types are as follows:

SYM_EvtOpNONE
SYM_EvtOpREAL_TIME
SYM_EvtOpHISTORICAL

RETURN VALUE A short integer signifying success (0) or failure (1)

METHOD addForeground (const short int shortParameter)

PURPOSE Add a short int foreground element to the event message.

ARGUMENTS shortParameter the short integer type that is to be added as a foreground element to
the event message.

RETURN VALUE A short integer signifying success (0) or failure (1)

METHOD addForeground (const long int longParameter)

PURPOSE Add a long int foreground element to the event message.

ARGUMENTS longParameter the long integer type that is to be added as a foreground element to the
event message.

RETURN VALUE A short integer signifying success (0) or failure (1)

Any questions or comments please contact Douglass George in Rm 35

Phone: 918-7488

E-mail dgeorge@v2kmail.gsfc.nasa.gov

EventProxy (3.6) Page 7 02/17/97

METHOD addForeground (const float floatParameter)

PURPOSE Add a float foreground element to the event message.

ARGUMENTS floatParameter the float type that is to be added as a foreground element to the event
message.

RETURN VALUE A short integer signifying success (0) or failure (1)

METHOD addForeground (const double doubleParameter)

PURPOSE Add a double foreground element to the event message.

ARGUMENTS doubleParameter the double type that is to be added as a foreground element to the
event message.

RETURN VALUE A short integer signifying success (0) or failure (1)

METHOD addForeground (const char* stringParameter)

PURPOSE Add a string foreground element to the event message.

ARGUMENTS stringParameter the character array type that is to be added as a foreground element
to the event message.

RETURN VALUE A short integer signifying success (0) or failure (1)

METHOD addForeground (const RWCString rwStringParameter)

PURPOSE Add a RWCString foreground element to the event message.

ARGUMENTS rwStringParameter the RWCString type that is to be added as a foreground element
to the event message.

RETURN VALUE A short integer signifying success (0) or failure (1)

Any questions or comments please contact Douglass George in Rm 35

Phone: 918-7488

E-mail dgeorge@v2kmail.gsfc.nasa.gov

EventProxy (3.6) Page 8 02/17/97

METHOD short int sendEvent()

PURPOSE To send the newly created event message to the EVT for processing. In debug mode,
the events will be stored on a local file in ASCII text format.

ARGUMENTS None

RETURN VALUE
A short integer signifying success (0) or failure (1)

As an alternative approach is to use the following overloaded operators to “stream” the necessary data of
creating and sending event messages. An example of using this technique is provided in the Example
section of this document.

OPERATOR SYM_EvtGenerator& SYM_EvtGenerator::operator ()
(const unsigned short int& eventID,
 const SYM_EvtEnumOpMode& opMode){

PURPOSE To create an event message containing the id number of the message and the
operational mode of the calling application.

ARGUMENTS eventID used to identify the id number as indicated in the Event Lookup Table
provided by the DMG subsystem

opMode used to identify the operational mode of the application using this particular
proxy object. Enumerated types are as follows:

SYM_EvtOpNONE
SYM_EvtOpREAL_TIME
SYM_EvtOpHISTORICAL

RETURN VALUE SYM_EvtGenerator& a reference to a SYM_EvtGenerator object

OPERATOR SYM_EvtGenerator& operator <<
(SYM_EvtGenerator& generator,
 const short int& shortParameter){

PURPOSE Add a short int foreground element to the event message.

ARGUMENTS SYM_EvtGenerator& a reference to a SYM_EvtGenerator object

shortParameter the short integer type that is to be added as a foreground element to
the event message.

RETURN VALUE SYM_EvtGenerator& a reference to a SYM_EvtGenerator object

Any questions or comments please contact Douglass George in Rm 35

Phone: 918-7488

E-mail dgeorge@v2kmail.gsfc.nasa.gov

EventProxy (3.6) Page 9 02/17/97

OPERATOR SYM_EvtGenerator& operator <<
(SYM_EvtGenerator& generator,
 const long int& longParameter)

PURPOSE Add a long int foreground element to the event message.

ARGUMENTS SYM_EvtGenerator& a reference to a SYM_EvtGenerator object

longParameter the long integer type that is to be added as a foreground element to the
event message.

RETURN VALUE SYM_EvtGenerator& a reference to a SYM_EvtGenerator object

OPERATOR SYM_EvtGenerator& operator <<
(SYM_EvtGenerator& generator,
 const float& floatParameter){

PURPOSE Add a float foreground element to the event message.

ARGUMENTS SYM_EvtGenerator& a reference to a SYM_EvtGenerator object

floatParameter the float type that is to be added as a foreground element to the event
message.

RETURN VALUE SYM_EvtGenerator& a reference to a SYM_EvtGenerator object

OPERATOR SYM_EvtGenerator& operator <<
(SYM_EvtGenerator& generator,
 const double& doubleParameter){

PURPOSE Add a double foreground element to the event message.

ARGUMENTS SYM_EvtGenerator& a reference to a SYM_EvtGenerator object

doubleParameter the double type that is to be added as a foreground element to the
event message.

RETURN VALUE SYM_EvtGenerator& a reference to a SYM_EvtGenerator object

Any questions or comments please contact Douglass George in Rm 35

Phone: 918-7488

E-mail dgeorge@v2kmail.gsfc.nasa.gov

EventProxy (3.6) Page 10 02/17/97

METHOD addForeground (const char* stringParameter)

OPERATOR SYM_EvtGenerator& operator <<
(SYM_EvtGenerator& generator,
 const char* stringParameter){

PURPOSE Add a string foreground element to the event message.

ARGUMENTS stringParameter the character array type that is to be added as a foreground element
to the event message.

RETURN VALUE A short integer signifying success (0) or failure (1)

OPERATOR SYM_EvtGenerator& operator <<
(SYM_EvtGenerator& generator,
 const RWCString& rwStringParameter){

PURPOSE Add a RWCString foreground element to the event message.

ARGUMENTS SYM_EvtGenerator& a reference to a SYM_EvtGenerator object

rwStringParameter the RWCString type that is to be added as a foreground element
to the event message.

RETURN VALUE SYM_EvtGenerator& a reference to a SYM_EvtGenerator object

OPERATOR void <<
(SYM_EvtGenerator& generator,
 const SYM_EvtEnumSend& aSend){

PURPOSE To send the newly created event message to the EVT for processing. In debug mode,
the events will be stored on a local file in ASCII text format.

ARGUMENTS SYM_EvtGenerator& a reference to a SYM_EvtGenerator object

aSend is an enumerated type that must be SYM_EvtSEND (case sensitive.)

RETURN VALUE void no return value

It is important to keep the data types in a form the expert system applications can use (for example:
keeping the value ‘6’ as an short int and not as a char or string). This will ensure that expert system
applications can perform inferencing using the short int, long int, float, and double data types of these event
messages. The number of elements and each element’s corresponding data type may be found in the Event
Lookup table provided by the DMG subsystem.

Any questions or comments please contact Douglass George in Rm 35

Phone: 918-7488

E-mail dgeorge@v2kmail.gsfc.nasa.gov

EventProxy (3.6) Page 11 02/17/97

CCS Applications will call the following destructor when shutting down:

METHOD
~SYM_EvtGenerator();

PURPOSE
Destructor

ARGUMENTS
None

RETURN VALUE
None

Any questions or comments please contact Douglass George in Rm 35

Phone: 918-7488

E-mail dgeorge@v2kmail.gsfc.nasa.gov

EventProxy (3.6) Page 12 02/17/97

Example

Scenario:

The examples listed below have hard-coded values. It is strongly recommended that developers avoid the
use of hard-coded values by using constants, environment variables, etc.

Suppose a SYM developer, named Doug, was finishing up his application named “Fault Detection Request
Manager.” This application wanted to generate an event message every time his application was initialized.
Doug has already entered in the message ID, Severity, Type, and Background into the Event Lookup Table
via the DMG provided interface. The event message Doug wants to create contains the following
information in the Event Lookup table:

ID_NUMBER 30,023
SEVERITY Informational
TYPE Software State Change
BACKGROUND Process started with %d requests by user %s

Example 1. Using overloaded methods:

Doug will then make sure he has instantiated a SYM_EvtGenerator object in his initialization routine:
.
.
.
unsigned short int myProcessNameID = 67; // The corresponding

//process name “FLT DT REQ MGR
//will be displayed by the GUI.

SYM_EvtSubSystem mySubSystem = CCS_SYM;//The corresponding
//subsystem name “SYM” will be displayed
// by the GUI

.

.

.
SYM_EvtGenerator myGenerator(myProcessNameID, // add process name

mySubSystem) // add subsystem
.
.
.
Doug will then make sure he has called the SYM_EvtGenerator.createEvent method correctly.

.

.

.
SYM_EvtOpMode myCurrentMode = SYM_EvtOpREAL_TIME;
int currentRequests = 6;
char* myUser = “DOUG”;
.
.
.
myGenerator.createEvent(30023, // set eventID
 myCurrentMode) // set opmode

Any questions or comments please contact Douglass George in Rm 35

Phone: 918-7488

E-mail dgeorge@v2kmail.gsfc.nasa.gov

EventProxy (3.6) Page 13 02/17/97

.

.

.

Doug will then make sure he add the Foreground elements to the event message.

myGenerator.addForeground(currentRequests) // add a short int 6 to
 //the Foreground
myGenerator.addForeground(myUser) //add string “DOUG” to the
 //Foreground

Doug will then make sure he completes the series of calls by sending the event message.

myGenerator.sendEvent() // sends the message to EVT for processing

.

.

.

Doug runs his application and sees the following on the Event Analyzer Display:
1996/365/16:33:32.000 SYM10023 I SSC “FLT DT REQ MGR” BB “PROCESS STARTED WITH 6 REQUESTS BY USER DOUG”

Example 2. Using overloaded operators:

Doug will then make sure he has instantiated a SYM_EvtGenerator object in his initialization routine:
.
.
.
unsigned short int myProcessNameID = 67; // The corresponding

//process name “FLT DT REQ MGR
//will be displayed by the GUI.

SYM_EvtSubSystem mySubSystem = CCS_SYM;//The corresponding
//subsystem name “SYM” will be displayed
// by the GUI

.

.

.
SYM_EvtGenerator myGenerator(myProcessNameID, // add process name

mySubSystem) // add subsystem
.
.
.
Doug will then make sure he has called the SYM_EvtGenerator.createEvent method correctly.

.

.

.
SYM_EvtOpMode myCurrentMode = SYM_EvtOpREAL_TIME;
int currentRequests = 6;
char* myUser = “DOUG”;
.
.
.
myGenerator.createEvent(30023,

Any questions or comments please contact Douglass George in Rm 35

Phone: 918-7488

E-mail dgeorge@v2kmail.gsfc.nasa.gov

EventProxy (3.6) Page 14 02/17/97

 myCurrentMode)
myGenerator(30023, // set eventID
 myCurrentMode) // set opmode
<< currentRequests // add a short int 6 to the Foreground
<< myUser //add string “DOUG” to the
<< SYM_EvtSEND; // sends the message to EVT for processing
.
.
.

Doug runs his application and sees the following on the Event Analyzer Display:
1996/365/16:33:32.000 SYM10023 I SSC “FLT DT REQ MGR” BB “PROCESS STARTED WITH 6 REQUESTS BY USER DOUG”

